46 research outputs found

    Prediction of SINR using BER and EVM for Massive MIMO Applications

    Get PDF
    Future communication systems employing massive multiple input multiple output will not have the ability to use channel state information at the mobile user terminals. Instead, it will be necessary for such devices to evaluate the downlink signal to interference and noise ratio (SINR) with interference both from the base station serving other users within the same cell and other base stations from adjacent cells. The SINR will act as an indicator of how well the precoders have been applied at the base station. The results presented in this paper from a 32 x 3 massive MIMO channel sounder measurement campaign at 2.4 GHz show how the received bit error rate and error vector magnitudes can be used to obtain a prediction of both the average and dynamically changing SINR.Comment: 12th European Conference on Antennas and Propagatio

    Optical and RF Metrology for 5G

    Full text link
    Specification standards will soon be available for 5G mobile RF communications. What optical and electrical metrology is needed or available to support the development of the supporting optical communication systems? Device measurement, digital oscilloscope impairments and improving system resolution are discussed.Comment: 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM

    Waveform characterization of calibration-pulse generators for EMI measuring receivers

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents the waveform characterization of calibration pulse generators intended to evaluate the response to pulses of the weighting detectors in CISPR 16-1-1 measuring receivers. First, the standard requirements of the reference pulses are described, and the pulse generators calibration methods based on waveform measurements are briefly discussed. Then, high-resolution time domain measurements are used for characterizing the waveforms of a commercial calibration-pulse generator in terms of rise/fall time, pulse width, mean voltage of the upper state, repetition frequency, and area. Moreover, the results above are used for estimating the spectral density of the impulses, their corresponding quasi-peak level, the pulses bandwidth, and the breakpoint frequencies. Finally, the measurement uncertainty is estimated for CISPR bands A, B, and C/D. Results are in good agreement with other calibrations performed during an intercomparison exercise and the uncertainty satisfy the target ±0.5 dB and 1% given in standards for the impulse area and pulse repetition frequency respectively.Postprint (author's final draft

    Waveform Approach for Assessing Conformity of CISPR 16-1-1 Measuring Receivers

    Get PDF
    An alternative approach for assessing the conformity of electromagnetic interference measuring receivers with respect to the baseline CISPR 16-1-1 requirements is proposed. The method’s core is based on the generation of digitally synthesized complex waveforms comprising multisine excitation signals and modulated pulses. The superposition of multiple narrowband reference signals populating the standard frequency bands allows for a single-stage evaluation of the receiver’s voltage accuracy and frequency selectivity. Moreover, characterizing the response of the weighting detectors using modulated pulses is more repeatable and less restrictive than the conventional approach. This methodology significantly reduces the amount of time required to complete the verification of the receiver’s baseline magnitudes, because time-domain measurements enable a broadband assessment while the typical calibration methodology follows the time-consuming narrow band frequency sweep scheme. Since the reference signals are generated using arbitrary waveform generators, they can be easily reproduced from a standard numerical vector. For different test receivers, the results of such assessment are presented in the 9 kHz–1 GHz frequency range. Finally, a discussion on the measurement uncertainty of this methodology for assessing measuring receivers is given.Postprint (author's final draft

    Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl

    Get PDF
    Citation: Noel, J. A., Broxterman, R. M., McCoy, G. M., Craig, J. C., Phelps, K. J., Burnett, D. D., . . . Gonzalez, J. M. (2016). Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl. Journal of Animal Science, 94(6), 2344-2356. doi:10.2527/jas2016-0398The objectives of this study were to determine the effects of dietary ractopamine HCl (RAC) on muscle fiber characteristics and electromyography (EMG) measures of finishing barrow exhaustion when barrows were subjected to increased levels of activity. Barrows (n = 34; 92 +/- 2 kg initial BW) were assigned to 1 of 2 treatments: a conventional swine finishing diet containing 0 mg/kg ractopamine HCl (CON) or a diet formulated to meet the requirements of finishing barrows fed 10 mg/kg RAC (RAC+). After 32 d on feed, barrows were individually moved around a track at 0.79 m/s until subjectively exhausted. Wireless EMG sensors were affixed to the deltoideus (DT), triceps brachii lateral head (TLH), tensor fasciae latae (TFL), and semitendinosus (ST) muscles to measure median power frequency (MdPF) and root mean square (RMS) as indicators of action potential conduction velocity and muscle fiber recruitment, respectively. After harvest, samples of each muscle were collected for fiber type, succinate dehydrogenase (SDH), and capillary density analysis. Speed was not different (P = 0.82) between treatments, but RAC+ barrows reached subjective exhaustion earlier and covered less distance than CON barrows (P 0.29). There was a treatment x muscle interaction (P = 0.04) for end-point RMS values. The RAC diet did not change end-point RMS values in the DT or TLH (P > 0.37); however, the diet tended to decrease and increase end-point RMS in the ST and TFL, respectively (P 0.10). Muscles of RAC+ barrows tended to have less type I fibers and more capillaries per fiber (P < 0.07). Type I and IIA fibers of RAC+ barrows were larger (P < 0.07). Compared with all other muscles, the ST had more (P < 0.01) type IIB fibers and larger type I, IIA, and IIX fibers (P < 0.01). Type I, IIA, and IIX fibers of the ST also contained less SDH compared with the other muscles (P < 0.01). Barrows fed a RAC diet had increased time to subjective exhaustion due to loss of active muscle fibers in the ST, possibly due to fibers being larger and less oxidative in metabolism. Size increases in type I and IIA fibers with no change in oxidative capacity could also contribute to early exhaustion of RAC+ barrows. Overall, EMG technology can measure real-time muscle fiber loss to help explain subjective exhaustion in barrows

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Practical aspects of a pulse generator calibration

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Measuring receivers are used for measurement of radio disturbance in the frequency range typically 9 kHz to 18 GHz. Such receivers can be either electromagnetic interference (EMI) receivers or spectrum analyzers with the quasi-peak (QP) detector. Requirements for measuring receivers are discussed in European CISPR documents (Comité International Spécial des Perturbations Radioélectriques) and US standards ANSI 63.2 (QP parts derived from CISPR). Although novel techniques are being evaluated, the traditional way of checking compliance of the receiver with requirements of these standards is using a calibrated pulse generator. The calibration of pulse generators is discussed in the standard EN 55016-1-1, which is the harmonized version of the international standard IEC/ CISPR 16-1-1(currently Ed. 4). In the standard, however, only a very brief description of the methods is given and technical details are hidden. The measurement uncertainty of the pulse generator characterization is not discussed in the standards; however, it was discussed in several previous works. This paper aims to provide a more thorough description of particular calibration methods together with practical hints which may be useful for students, calibration engineers, and practitioners.This work was supported by the project 15RPT01 RFMicrowave. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programmePeer Reviewe

    Waveform characterization of calibration-pulse generators for EMI measuring receivers

    No full text
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents the waveform characterization of calibration pulse generators intended to evaluate the response to pulses of the weighting detectors in CISPR 16-1-1 measuring receivers. First, the standard requirements of the reference pulses are described, and the pulse generators calibration methods based on waveform measurements are briefly discussed. Then, high-resolution time domain measurements are used for characterizing the waveforms of a commercial calibration-pulse generator in terms of rise/fall time, pulse width, mean voltage of the upper state, repetition frequency, and area. Moreover, the results above are used for estimating the spectral density of the impulses, their corresponding quasi-peak level, the pulses bandwidth, and the breakpoint frequencies. Finally, the measurement uncertainty is estimated for CISPR bands A, B, and C/D. Results are in good agreement with other calibrations performed during an intercomparison exercise and the uncertainty satisfy the target ±0.5 dB and 1% given in standards for the impulse area and pulse repetition frequency respectively

    Waveform Approach for Assessing Conformity of CISPR 16-1-1 Measuring Receivers

    No full text
    An alternative approach for assessing the conformity of electromagnetic interference measuring receivers with respect to the baseline CISPR 16-1-1 requirements is proposed. The method’s core is based on the generation of digitally synthesized complex waveforms comprising multisine excitation signals and modulated pulses. The superposition of multiple narrowband reference signals populating the standard frequency bands allows for a single-stage evaluation of the receiver’s voltage accuracy and frequency selectivity. Moreover, characterizing the response of the weighting detectors using modulated pulses is more repeatable and less restrictive than the conventional approach. This methodology significantly reduces the amount of time required to complete the verification of the receiver’s baseline magnitudes, because time-domain measurements enable a broadband assessment while the typical calibration methodology follows the time-consuming narrow band frequency sweep scheme. Since the reference signals are generated using arbitrary waveform generators, they can be easily reproduced from a standard numerical vector. For different test receivers, the results of such assessment are presented in the 9 kHz–1 GHz frequency range. Finally, a discussion on the measurement uncertainty of this methodology for assessing measuring receivers is given
    corecore